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Abstract

There has been an increased interest in resilient supplier selection in recent
years, much of it focusing on forecasting the disruption probabilities. We
conceptualize an entirely different approach to analyzing the risk profiles of
supplier performance under uncertainty by utilizing the data analytics capa-
bilities in digital manufacturing. Digital manufacturing peculiarly challenge
the supplier selection by the dynamic order allocations, and opens new op-
portunities to exploit the digital data to improve sourcing decisions. We
develop a hybrid technique, combining simulation and machine learning and
examine its applications to data-driven decision-making support in resilient
supplier selection. We consider on-time delivery an indicator for supplier
reliability, and explore the conditions surrounding the formation of resilient
supply performance profiles. We theorize the notions of risk profile of supplier
performance and resilient supply chain performance. We show that the asso-
ciations of the deviations from the resilient supply chain performance profile
with the risk profiles of supplier performance can be efficiently deciphered by
our approach. The results suggest that a combination of supervised machine
learning and simulation, if utilized properly, improves the delivery reliability.
Our approach can also be of value when analyzing the supplier base and un-
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covering the critical suppliers, or combinations of suppliers the disruption of
which result in the adverse performance decreases. The results of this study
advance our understanding about how and when machine learning and sim-
ulation can be combined to create digital supply chain twins, and through
these twins improve resilience. The proposed data-driven decision-making
model for resilient supplier selection can be further exploited for design of
risk mitigation strategies in supply chain disruption management models,
re-designing the supplier base or investing in most important and risky sup-
pliers.

Keywords: Supplier Selection, Machine Learning, Simulation, Digital
Supply Chain, Data-driven Decision-Making Support, Resilience, Digital
Supply Chain Twin

1. Introduction1

Companies whose suppliers are prone to disruption risks have a common2

question to ask. How do firms obtain better performance than others if3

similar suppliers are affected by disruptions? Recent research hypothesized4

that some of that success is attributable to the resilient supplier selection5

and development [1, 2, 3, 4, 5, 6, 7]. Manufacturing firms operate in en-6

vironments with inherent uncertainties in demand, supply, cost, lead time7

(LT) and catastrophic disasters [8, 9, 10]. The increase in data availability8

and the emergence of new digital technologies, such as machine learning,9

cloud computing, internet of things (IoT) and blockchain enable managers10

and government to cope with uncertainties using intelligent decision-making11

principles [11, 12, 13, 14, 15, 16, 17, 18]. The Big Data phenomenon forced12

the development of new techniques in fast analytics and data science as part13

of business intelligence using firms’ dynamic capabilities [19, 20, 21, 22]. Al-14

tay et al. [23] point out supply chain agility and supply chain resilience are15

dynamic capabilities that have significant effect on supply chain performance.16

Digital manufacturing peculiarly challenge the supplier selection by the17

dynamic order allocations, and opens new opportunities to exploit the digital18

data to improve sourcing decisions. Gandomi and Haider [24] believe the19

current hype can be attributed to leading technology companies, such as20

IBM, who invested in building a niche analytics market. Techniques involving21

supervised machine learning (SML) have already become powerful tools with22

various applications within intelligent manufacturing systems [25, 26]. In23
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this study, SML is further investigated regards to its application to supplier24

selection in digital manufacturing with consideration of resilience.25

Supplier selection is a critical issue for maintaining competitive advantage26

in supply chain (SC) management [27, 28, 29, 30]. Multi-factor supplier se-27

lection has been recently extended by inclusion of disruption risks to address28

SC resilience [5, 6, 7, 31, 32, 33, 34, 35, 36]. Achieving SC resilience involves29

adopting reactive and proactive approaches by creating certain protections30

and taking into account possible perturbations through contingency plans31

or backup supply planning [37, 38]. Digital technologies do not only enable32

data-driven decision support tools [39], but also stimulate the development33

of new production forms, such as smart manufacturing and Industry 4.034

[9, 40, 41, 42, 43]. These new forms of digital manufacturing are character-35

ized by higher flexibility, make-to-order environments and customer-driven36

SC dynamic structuring, which requires dynamic supplier selection analysis.37

At the same time, digital manufacturing is expected to face increased disrup-38

tion risks due to increasing complexity and globalization [9]. As such, there39

is also a need for new modeling approaches with which to analyze resilient40

supplier selection in novel organizational networks [44] and Big Data can be41

essential in supplier risk management as it can give detailed understanding42

of supplier performance towards the identification of opportunities for better43

sourcing [45].44

Despite the considerable progress in resilient supplier selection and data-45

driven decision support systems in SCs, we are not aware of any published46

research that considers data-driven approaches to supplier selection with con-47

sideration of resilience in a digital manufacturing environment. Since digi-48

tal data is considered a key source for both new manufacturing forms and49

decision-support systems [46], the objective of this study is to close the re-50

search gap described above and, by means of a test case, advance knowledge51

of how SML can contribute to supplier selection in the context of digital-52

ization and SC resilience. Supplier selection involves consideration of both53

recurrent and disruption events, i.e., frequent events with low impact and54

rare events with high impact, respectively [7, 31, 47, 48]. According to Sawik55

[49], in make-to-order environments and customer-driven SCs, customer ser-56

vice level is of particular importance, since it can be analyzed as a substitute57

for shortage costs that are hard to estimate.58

While studies have established a salience of resilient supplier selection in59

recent years, much of it was focusing on forecasting the disruption probabil-60

ities. We conceptualize an entirely different approach to analyzing the risk61
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profiles of supplier performance under uncertainty by utilizing the data an-62

alytics capabilities in smart manufacturing using the digital twin principles.63

Hence, uncertainties of the environment are evaluated based on the learning64

of the system in terms of suppliers performance in the SC. Digital SC twins65

were recently defined as computerized models that represent the network66

state for any given moment in time and allow for complete end-to-end SC67

visibility to improve resilience and test contingency plans [50].68

We develop a hybrid technique, combining simulation and SML and ex-69

amine its applications to data-driven decision-making support in resilient70

supplier selection. We consider on-time delivery (OTD), also known as deliv-71

ery reliability, an indicator for supplier reliability, and explore the conditions72

surrounding the formation of resilient supply performance profiles. Further,73

we theorize the notions of risk profile of supplier performance and resilient74

SC performance. We define risk profile of supplier performance as a set of75

negative outcomes in simulation runs associated with a particular supplier in76

terms of failing to meet the OTD requirement regarding the orders allocated77

at the supplier. Resilient supply chain performance, in turn is abstracted78

to total OTD of the SC regarding the customer demand [51, 52, 53] as a79

composition of delivery date and delivery quantity.80

We show that the associations of the deviations from the resilient sup-81

ply chain performance profile with the risk profiles of supplier performance82

can be efficiently deciphered by our approach. The results suggest that a83

combination of SML and simulation, if utilized properly, improve the deliv-84

ery reliability. Such a combination is unique in literature. It mimics the85

complexity of business reality affording a more realistic approach to making86

sourcing decisions and appears to be more relevant in practical environments.87

Our approach can also be of value when analyzing the supplier base and un-88

covering the critical suppliers, or combinations of suppliers the disruption89

at which results in the adverse performance decreases. The results of this90

study contribute to the understanding of the use of digital SC twins with the91

aim to improve resilience by means of the combination of machine learning92

(ML) and simulation. The proposed resilient supplier selection can be fur-93

ther considered as a support system to design risk mitigation strategies in94

the development of supplier portfolio, SC disruption management models or95

investing in most important and risky suppliers.96

The remainder of this paper is organized as follows. Section 2 presents97

current relevant literature concerning supplier selection approaches and data-98

driven decision support systems with consideration of resilience. Section 399

4



describes a hybrid approach to supplier selection, combining simulation and100

ML. The results are discussed in Section 4 and managerial and theoretical101

implications are discussed in Section 5. Section 6 concludes the paper by102

highlighting the insights gained in this study and outlining future research103

opportunities.104

2. State-of-the-art105

2.1. Supplier selection with resilience considerations106

Our study builds on three conceptual perspectives. First and principally,107

we greatly benefited from the literature on resilient supplier selection. The108

second perspective is the application of ML techniques to SC management.109

Finally, studies on data-driven decision support systems for supplier and110

disruption risk management pointed the directions in development of infor-111

mation management framework in our model.112

As SC structures become increasingly complex and global, manufactur-113

ing firms become increasingly dependent on their suppliers. Complexity and114

globalization also increase SC risk exposure [6]. Hamdi et al. [54] state that115

the best supplier is usually the one who can deliver the right product at the116

right time, in the right place, in the right quantity at a competitive price.117

Increased SC risk exposure forces the inclusion of resilience into supplier118

selection procedures [5, 6, 19, 27, 34, 35]. The concept of SC resilience is de-119

fined by Ivanov et al. [9] as a complex characteristic of non-failure operation,120

durability, recoverability with the maintenance of SC processes and the SC as121

a whole. Therefore, supplier selection has become a key element in designing122

efficient, synchronized and resilient operations in digital manufacturing SCs.123

Rajagopal et al. [8] and Hamdi et al. [54] carry out literature reviews124

correlating topics of supplier selection and risk management in the SC, the125

first being a subset of the second. According to Tomlin [31] and Dolgui126

et al. [48], the risks in SCs can be divided into recurrent or disruptive. For127

Jüttner et al. [55], risks in the SC can be classified as internal risks, SC risks128

or external risks. The authors state the first arises within the organization,129

the second arises externally to the organization but within the SC, and the130

third arises externally and outside the SC, that is, it affects several chains131

simultaneously.132

Ivanov and Dolgui [56] elaborate on the importance of increasing SC re-133

silience in efficient ways, i.e., achieving SC resileanness (resilient + lean). As134

such, resilient supplier selection must be subject to a multi-factor analysis. In135
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his seminal paper, Dickson [29] presents 23 criteria, of which quality, delivery136

and performance history are shown to be the three most important factors137

in vendor selection. Drawing from recent literature, Chen et al. [57] cluster138

11 main criteria for supplier selection, alongside their definitions, these are:139

finance, quality, delivery, relationship, service, technology, supply facilities,140

management, efficacy, environment and risk factors. Therefore, in this paper,141

delivery reliability assessed based on historical data is considered to measure142

service level performance. Furthermore, Hamdi et al. [54] subdivides supplier143

selection decision approaches into four: i. quantitative, ii. qualitative, iii.144

using simulation tools and iv. using artificial intelligence. In quantitative145

approaches, the factors or criteria under study can be measured and quanti-146

fied numerically, for instance, delivery reliability [30]. None of these studies,147

though, formally examined the data analytics capabilities in selecting the148

resilient supplier portfolios – a disctinctive and significant contribution made149

by our study. In our study, a hybrid approach integrating a simulation tool150

and SML techniques is developed and tested.151

Rajesh and Ravi [58] state resilience means the adaptive capability to152

respond to disruptions and recover from them. A resilient supplier is able153

to provide good quality products at economic rates and is flexible enough154

to accommodate demand fluctuations with shorter LTs over a lower ambi-155

ence of risk without compromising safety and environmental practices [58].156

Furthermore, the development of SC resilience is of particular importance157

when developing an agile SC in uncertain market conditions and flexibility158

strategies. For example, dual or multiple sourcing are typically utilized to159

cope with disruption risks and recovery measures [34, 35, 59].160

Torabi et al. [4] propose a five-step method to enhance the supply re-161

silience level in a scenario-based, bi-objective, possibilistic mixed integer lin-162

ear model to build resilient supply bases for global SCs. The computational163

experiments indicate the consideration of disruptive events can have signifi-164

cant impact on selected supply bases. The authors introduce a new supply165

side objective function to calculate the resilience level of the selected supply166

base and consider several strategies, such as suppliers’ business continuity167

plans, fortification of suppliers and contracts with backup suppliers, to en-168

hance the resilience level of the supply network.169

Sawik [3] states a resilient supply portfolio includes protected suppliers170

that are capable of supplying despite disruption, as well as having emergency171

inventory options which can be used to compensate for the lost capacity of172

suppliers and to replace non-delivered parts ordered from disrupted suppliers.173
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Bohner and Minner [60] use a mixed-integer linear program approach to174

solve the supplier selection problem subject to disruptions. The model con-175

siders backup suppliers and less risky, but more expensive, main supplier.176

They evaluate supplier selection performance in terms of cost and trade-offs177

between economies of scale and failure risk. Diverse techniques and methods,178

such as multi-objective mixed integer programming, stochastic mixed inte-179

ger programming, fuzzy analytic hierarchy process, bayesian network, con-180

ditional value-at-risk (CVaR), worst-case CVaR, data envelopment analysis,181

technique for order of preference by similarity to ideal solution and analytical182

approaches are used to perform resilient supplier selection under operational183

and disruption risks [6, 33, 61, 62, 63, 64, 65].184

Vugrin et al. [66] define the resilience capacity of a system as a function185

of absorptive, adaptive, and restorative capacities. Hosseini and Barker [5]186

used this concept and extended it to the supplier selection problem. First,187

absorptive capacity refers to the ability to absorb shocks from disruptive188

events, implying proactive planning or development of pre-disaster strate-189

gies. In the context of supplier selection, the authors cite four main fea-190

tures: geographical segregation, i.e., segregation of a supplier geographically191

from natural disasters, surplus inventory, backup supplier contracting and192

physical protection, i.e., security of suppliers’ facility from disruptive events.193

Second, adaptive capacity is considered a temporary post-disaster strategy,194

e.g., redundant transportation for use in non-standard rerouting following195

disruption. Last, restorative capacity refers to the recover phase and is the196

last line of defense against disruption.197

Considering the SC as a whole, the dynamic nature of the supplier-198

customer relationship influences disruption propagation, and therefore the199

SC structure and dependence [67]. Wu and Olson [32] state long-term and200

permanent relationships in SCs usually result in benefits such as lower pur-201

chase costs and can culminate in lower prices for the final customer. This202

perspective is echoed by Sheffi and Rice Jr. [68] and Chen et al. [57], who203

emphasize that loyalty in the supplier-customer relationship provides bene-204

fits to the SC by making it more resilient to crisis and demand fluctuations.205

However, the authors do not address the fact that in this period of digital206

transformation firms are becoming more data-oriented and may even overlap207

this loyal relationship between supplier-customer in decision-making supplier208

selection processes.209

Despite the significant advances achieved in recent years, the literature210

reviewed does not specify an explicit approach to using the digital data in im-211
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proving SC performance by building the resilient supplier portfolios. While212

a growing body of literature pointed to the importance of developing the213

resilient SC, less attention was directed to the exploiting the resilience ca-214

pabilities through a dynamic analysis of SC performance [47, 51]. An im-215

portant dimension in resilient supplier selection – the dynamic analysis of216

supplier performance risk profiles was left ignored. Given that the relation-217

ship between suppliers and customers may become ephemeral and strongly218

influenced by data with automated intelligent decision-making, it is possible219

to perceive that new research opportunities in this field will arise.220

2.2. Data-driven decision support systems for supplier and disruption risk221

management222

Digital factory concepts share the attributes of smart networking [69].223

The vision of Industry 4.0 is that the manufacturing system contains all the224

relevant information about its production and supply requirements. Digital225

technologies enable flexible decision-making by providing real-time data for226

all parts of the SC [20, 70, 71].227

Dubey et al. [11], Papadopoulos et al. [10], Gunasekaran et al. [12], Choi228

et al. [72] and Nguyen et al. [73] provide evidence that data analytics is be-229

ing applied to SC management in procurement, manufacturing shop floors,230

routing optimization, real-time traffic operation monitoring, proactive safety231

management, and in-transit inventory management in logistics/transportation.232

Reducing SC cost as well as carbon emissions are important tasks to consider233

in operational decisions in order to be competitive in the digital manufac-234

turing environment [74, 75]. Models providing optimal decisions consider-235

ing sustainable procurement and transportation based on real data can be236

found in the literature [76, 77]. Furthermore, Kaur and Singh [78] model237

sustainability-resilience link at the supply chain design level through the238

procurement and logistics of raw material. Their model suggests there is a239

trade-off between lot-size orders, carbon emissions and SC resilience, mean-240

ing that smaller lot-size leads to larger carbon emission due to transportation241

and greater risk of supply chain disruption. A similar problem setting of sus-242

tainable use of resources to build SC resilience can be found in Pavlov et al.243

[79].244

Papadopoulos et al. [10] point out that data analytics can help improve SC245

risk management and disaster-resistance. Choi and Lambert [80] and Choi246

et al. [81] provide evidence of how data analytics can be used to improve the247
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resilience of SC operations by utilizing firms databases and large volumes of248

data to predict risks, assess vulnerability and enhance their SCs.249

Simchi-Levi et al. [82] present a data-driven system to analyze supplier250

exposure in the automotive sector. This system estimates supplier risk expo-251

sure, and evaluates pre-disruption risk mitigation actions and optimal post-252

disruption contingency plan deployment. The system integrates databases,253

a quantitative risk-exposure model, and an output performance visualization254

tool. The data sources include material requirements planning system, the255

purchasing database, and sales-volume planning information based on the SC256

mapping methodology [83]. The optimization engine uses the data to test the257

various performance impacts of disruptions. Decision-makers in procurement258

and risk specialists can use the system to track risk exposures in real time259

as inventory levels fluctuate and the SC structure evolves. The frequency260

of updates relies on the data-integration technology and the computational261

tractability of the optimization models.262

Ivanov et al. [9] show that data analytics can be used at the planning263

stage to identify supplier risk exposure and can help at the reactive stage to264

monitor and identify disruptions. They propose a framework of integrated265

cyber-physical SC simulation and optimization and relate this framework266

to system-cybernetics principles. Their results echo those in the study by267

Choi [84] that presented a new practical perspective on how big data related268

technologies can be used for global SCs with a system of systems mindset.269

2.3. ML applications to SCs and manufacturing270

ML can be applied to resilient SCs. Baryannis et al. [85] summarize271

recent AI applications to SC risk management and show future research op-272

portunities in risk identification, assessment and response. Priore et al. [86]273

apply ML to the dynamic selection of replenishment policies according to SC274

environmental dynamics. ML techniques have been applied to detect bot-275

tlenecks, high-risk tasks and events in order to achieve adequate production276

rescheduling [87, 88]. Palombarini and Mart́ınez [89] prototype an applica-277

tion that performs rescheduling based on relational reinforcement learning278

(RL).279

Shahzad and Mebarki [90] propose framework based on data mining for280

job shop scheduling problems (JSSPs) that identifies the critical parameters281

and states of particular dynamic scheduling environments. Stricker et al.282

[91], Waschneck et al. [92] and Li et al. [93] use RL to solve the JSSP. First,283
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Stricker et al. [91] develop an RL-based adaptive order dispatching algo-284

rithm that can outperform existing rule-based heuristics approaches. Sec-285

ond, Waschneck et al. [92] test an RL approach in a simulation of a discrete286

event at a small semi-conductor factor and observe that although the learn-287

ing algorithms do not overcome the heuristics, the RL was able to reach an288

expert knowledge level with two days of training. Third, Li et al. [93] in-289

vestigate pricing, lead-time, scheduling and order acceptance decisions in a290

make-to-order manufacturing system with stochastic demands in a discrete-291

event simulation model. They develop an RL based Q-learning algorithm292

(QLA) and find that the QLA performance is superior to the existing poli-293

cies.294

Tuncel et al. [94] apply an RL approach to solve a disassembly line balanc-295

ing problem with uncertainty. Kartal et al. [95] develop a hybrid methodology296

that integrates ML with multi-criteria decision-making techniques in order to297

execute multi-attribute inventory analysis. The authors implemented naive298

bayes, bayesian network, artificial neural networks (NN), and support vector299

machine (SVM) algorithms to predict classes of initially determined stock300

items in a large-scale automotive company. Sharp et al. [96] analyze ap-301

proximately 4000 abstracts by means of the Natural Language Processing302

technique and conclude that generically applicable algorithms such as NNs303

and SVMs are gaining popularity in the field of manufacturing.304

Another application of ML to manufacturing is prediction of LT and cy-305

cle time (CT) key performance indicators. Most production planning and306

scheduling methods rely on LTs. The efficiency of these methods is crucially307

affected by the accuracy of LT prediction [97]. The authors perform an LT308

prediction based on regression algorithms for a real flow-shop environment309

exposed to frequent changes and uncertainties resulting from the changing310

customer order stream. Lingitz et al. [98] use SML approaches to perform311

LT prediction based on historical production data obtained from manufac-312

turing execution systems. CT forecasting is one of the most crucial issues313

for production planning in terms of maintaining high delivery reliability in314

semiconductor wafer fabrication systems [99]. Wang et al. [100] use a recur-315

rent NN to model a CT forecast, estimating the short-term CT forecast of316

wafer lots.317

Location awareness has high potential to produce valuable information in318

manufacturing facilities [101]. Technologies such as radio frequency identi-319

fication (RFID) and bluetooth low energy devices, e.g., beacons, enable the320

collection of data pools from manufacturing shop-floors. Carrasco et al. [101]321
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present a system that finds the nearest machine to a user. The authors use322

nearest neighbor, weighted k-Nearest Neighbor (k-NN) and bayesian infer-323

ence techniques. Solti et al. [102] investigate the effectiveness and efficiency324

of outlier detection methods for finding misplaced products in a real setting325

with an RFID inventory robot. Their research suggests that ML techniques326

can be effectively used to harness sensor systems for improved operational327

use cases. Similarly, Kho et al. [103] use RFID technology to capture real-328

time production data and then apply two ML techniques: k-means clustering329

and gradient descent optimization. The authors state that valid predictions330

about the expected overall manufacturing time for a given number of manu-331

facturing batch inputs can be obtained.332

ML has been used to improve manufacturing at the process level. For333

instance, Diaz-Rozo et al. [104] propose a cyber-physical system (CPS) for334

machine component knowledge discovery based on clustering algorithms us-335

ing real data from a machining process. Three clustering algorithms are com-336

pared – k-means, hierarchical agglomerative and Gaussian mixture models –337

in terms of their contribution to spindle performance knowledge during high338

throughput machining operation. Furthermore, Kruger et al. [105] show that339

the process optimization is capable of learning and optimizing a high-volume340

gun drilling process. The learning process generated regression models for341

the manufacturing process and the agent was able to determine the optimal342

trade-off between the technical and economic factors.343

Guo et al. [106] present a SVM model combined with decision tree (DT)344

to address issues on supplier selection including feature selection, and multi-345

class classification. Mirkouei and Haapala [107] also use SVM and DT inte-346

grated with a mathematical programming approach to supplement existing347

supplier selection methods in a biomass-to-biofuel SC.348

Although ML is not a favorable method for all industrial problems, en-349

couraging the application of learning algorithms can contribute to the achieve-350

ment of autonomous production systems [91]. Kusiak [108] highlights five351

gaps in manufacturing innovation in the digital transformation era: i.) adopt352

data strategies, ii.) improve data collection, use and sharing, iii.) design pre-353

dictive models, iv.) study general predictive models and v.) connect facto-354

ries and control processes. Therefore, since ML provides intelligent outcomes355

from data, a close follow up in this research field is fundamental to innovation356

in a resilient data-driven manufacturing environment.357

Despite of significant advances in ML application to SC and operations358

management achieved recently, the literature does not specify directions as359
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to how to make use of digital data and to utilize the ML advantages to build360

resilient supplier portfolios. As a result, it is not yet clear how ML can con-361

tribute to the conceptual and technological frameworks of resilient supplier362

selection. This also means that the causes of SC performance perturbations363

due to disruptions in supply base have not been entirely disentangled from364

the risk profiles of supplier performance.365

3. Digital Manufacturing Experimentation366

In this section, a digital manufacturing experiment is described, which367

adopts a hybrid approach in combination with simulation and ML models368

and integrates these within the context of supplier selection.369

3.1. Simulation Model370

Simulations make use of agents, system dynamics and discrete events to371

gain a better understanding of interactions and support the deployment of372

organizational networks [44]. In this study, the simulation model is performed373

with Anylogic software and represents a make-to-order manufacturing system374

which has up to four raw material suppliers. Fig. 1 illustrates the information375

and materials flows in the simulation model.376

According to the model parameters, raw material orders only occur after a377

customer order is consolidated and raw material is the only necessary supply378

to manufacture the final product. The purchase orders are characterized379

by normal distributions as shown in Bodaghi et al. [109] as well as demand380

uncertainty. Furthermore, it is assumed only one type of product being381

delivered and price and supplier competition analysis are neglected.382

Supplier performance is modeled in way that is similar to that of Tomlin383

[31]: one supplier may be unreliable in a certain period and also may have384

deterministic capacity limitations. In this paper, four possible suppliers are385

considered and the previously mentioned restrictions influence the delivery386

performance of suppliers, which is modeled according to a normal distribu-387

tion.388

3.2. ML Model389

ML addresses the question of how to build computers that improve auto-390

matically through experience. It is one of the most rapidly growing technical391

fields, lying at the intersection of computer science and statistics, and at392

the edge of artificial intelligence and data science [26]. In this work, the393
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Figure 1: Make-to-order simulation model.

ML model is implemented using the Scikit-Learn package, which is defined394

by Pedregosa et al. [110] as a Python module that integrates a wide range395

of state-of-the-art ML algorithms for medium-scale supervised and unsuper-396

vised problems. Moreover, other packages such as Numpy, Matplotlib and397

Pandas are also used to perform data preprocessing, data analysis and visu-398

alization tasks. Fig. 2 shows the supplier selection model using SML.399

The preprocessing step can often have a significant impact on the gen-400

eralized performance of a SML algorithm and may include sub-steps, such401

as data cleaning, normalization, transformation, feature extraction and se-402

lection, etc. [111]. In this work, since data is generated from a simulation,403

the database is of good quality: such issues as missing values, impossible404

data combination (e.g., negative number of products), zero values etc. rarely405

occur. Therefore, the preprocessing step is simpler when dealing with simu-406

lation models as compared to real databases.407

Manufacturing problems can often be labeled and specialist feedbacks are408

available, therefore SML techniques are recommended for manufacturing ap-409

plications [25]. The labels in SML may be of discrete or continuous type and410
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Figure 2: Supplier selection model using supervised machine learning.

can be managed by classification or regression algorithms, respectively [112].411

The classification is used for prediction, pattern recognition and detection of412

anomalous values while regression is used for prediction and ranking. Two413

SML algorithms are used for classification in this work: k-NN and Logistic414

Regression (LR).415

The k-NN algorithm is a non-parametric procedure, i.e., it does not as-416

sume prior knowledge of statistical distributions, that assigns to the un-417

classified instance the nearest instance label using geometric distances [113].418

Although LR contains the word regression, it is a learning algorithm used419

to classify or predict the probability of occurrence of an event by adapting420

the data to a logistic function and can be used for situations in which the421

dependent variable is a binary [114]. In addition, LR is a resource that al-422
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lows estimating the probability associated with the occurrence of a particular423

event in the face of a set of explanatory variables, i.e., variables that affect424

the system response and can be defined by the researcher.425

The k-NN algorithm is the most common classification algorithm in cases426

where there is no prior knowledge of data distribution [115], and LR is based427

on supervised learning, which organizes itself according to the nature of the428

input data and there is little need to know about the characteristics of this429

input data [114]. Although it is known the simulation utilizes normal dis-430

tribution, in real cases data is likely to differ from a well-behaved normal431

distribution, so the SML model does not take advantage of any prior knowl-432

edge about the system behavior in order to better represent a real case. The433

aim of the model is to select suppliers with the best chance of delivering an434

order on time based on past data.435

In this work, past data is categorized as i.) deliveries on-time and ii.)436

late deliveries. The k-NN algorithm is applied separately for each of the two437

datasets and maps the suppliers’ performance according to the previously438

mentioned characteristics of the model: date and order quantity. In LR, both439

datasets are the input data and the expected result for each customer order440

is the probability of each supplier delivering the order within the expected441

time frame. Therefore, the risk profile represents the probability of success in442

predicting the supplier behavior in the system regarding the target feature,443

which is the OTD in this model.444

The LR algorithm draws a risk profile for each supplier based on the445

model’s input data, i.e., relevant features that influence the OTD perfor-446

mance for each order: date and order quantity. The output data from this447

profile is the probability of success in delivering that order on time. After448

this, through a ranking of the suppliers, the less risky supplier for that par-449

ticular order is selected. The k-NN algorithm considers the same input data450

and the algorithm predicts which supplier has the greatest probability of de-451

livering an order on time and which supplier has the greatest probability of452

performing a late delivery. After this, the supplier with the greatest chance453

of delivering the order on time is selected.454

In addition, a combination of these two techniques is presented in this455

paper. The first, Hybrid A, confronts the results of both algorithms’ clas-456

sification without considering the accuracy of each technique. The second,457

Hybrid B, takes the same approach, but considers the accuracy of each clas-458

sifier.459

The accuracy for the k-NN model is the rate in which the model correctly460
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predicts the real outcome. For instance, acca and accb stand for the accu-461

racy of the k-NN model which uses the deliveries on-time and late deliveries462

categorizations, respectively. Furthermore, Rka and Rkb stand for the k-NN463

classifier results using the deliveries on-time and late deliveries categoriza-464

tions, respectively.465

The accuracy for the LR model is the area under the receiving operat-466

ing characteristic (ROC) curve. The area under the curve (AUC) can vary467

from 0 to 1 and a value of 0.5 is considered a random prediction perfor-468

mance. Fawcett [116] presents a detailed explanation of ROC curve analysis.469

Moreover, Rlr1 and Rlr2 represent the results for the first and second suppli-470

ers most likely to meet the demand on time according to the LR classifier,471

respectively. Both pseudo-codes are presented as follows.472

Algorithm 1 Hybrid A

1: procedure Selection(d, q) . date and quantity
2: if Rlr1 = Rkb then
3: return Rka

4: else
5: return Rlr1

6: end if
7: end procedure

3.3. Integration473

The integration of the simulation and ML models is accomplished through474

the data exchange results of each model. In this work, the data exchange is475

achieved with the help of text format files. The sequence of activities for this476

integration can be summarized in three steps, as shown in Fig. 3.477

The first step consists of (i.) database generation by means of a simulation478

model. In step two (ii.) this database is used as input data in the ML model479

and then intelligent decision-making results are generated in an output file,480

which serves as input data to the test simulation experiment. Finally, in step481

three (iii.) the test simulation results are compiled and analyzed.482

3.4. Numerical Experiment483

Under the framework shown in Subsections 3.1 - 3.3, we now introduce a484

scenario under which our modelling methodology would be deployed. In order485
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Algorithm 2 Hybrid B

procedure Selection(d, q) . date and quantity
2: if AUC ≥ acca then

if AUC ≥ accb then
4: return Rlr1

else
6: if Rkb = Rlr1 then

return Rlr2

8: else
return Rlr1

10: end if
end if

12: else
if AUC ≥ accb then

14: if Rka = Rkb then
if Rka = Rlr1 then

16: return Rlr2

else
18: return Rlr1

end if
20: else

return Rka

22: end if
else

24: return Rka

end if
26: end if

end procedure

to evaluate the developed approach, a numerical experiment was conducted.486

The experiment takes place in a time window of 4 years, in which 50% of the487

period is used as a training data set, 25% for model validation and tuning and488

the last 25% as test data. During the training phase, the order allocation to489

suppliers is random to generate the database of suppliers’ performance. Next,490

SML models train on the training dataset and perform the order allocation491

to suppliers in test phase. Both algorithms, i.e., LR and k-NN make order492

allocation towards suppliers which have greatest probability of success in493
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Figure 3: Integration between simulation and machine learning models.

delivering a specific order on time. The performance of the SML models494

refer only to the results obtained in the test phase.495

The first scenario assumes full availability of the four suppliers. The sec-496

ond scenario assumes unavailability of two suppliers due to a disruption in497

the system, so only two suppliers are available in the testing phase. There-498

fore, the supplier selection performance will be evaluated by comparing (i.)499

random choice of suppliers, which shows that this kind of data analysis does500

not exist – correlation between date and order quantity, (ii.) using k-NN and501

(iii.) LR algorithms, as well as the combination of these two techniques by502

means of (iv.) Hybrid A and (v.) Hybrid B algorithms in both scenarios.503

4. Results and Discussion504

In this section the experiment results are presented using the combination505

of simulation and SML algorithms for resilient supplier selection. First, the506

LR performance is shown using four different seeds (n1 to n4) , as shown in507

Fig. 4, which translates the prediction accuracy of each supplier given order508

date and quantity characteristics.509

For instance, since the AUC of Supplier 1 and 3 (S1 and S3) is inferior to510

that of the AUC of Supplier 2 and 4 (S2 and S4), it is possible to conclude that511

based on past data, LR predicts the behavior of S2 and S4 better than that512

of S1 and S3. Thus, depending on suppliers’ characteristics, more accurate513

models can be found using the same algorithm. In addition, an extract of S1514

and S2 ROC curves using different simulation seeds is shown in Fig. 5. It can515

be observed there is a convergence aspect of S2 compared to S1. This can be516
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(a) ROC Curve of all suppliers with n1 (b) ROC Curve of all suppliers with n2

(c) ROC Curve of all suppliers with n3 (d) ROC Curve of all suppliers with n4

Figure 4: ROC Curve of all suppliers (S1 to S4).
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(a) ROC Curve of S1 (b) ROC Curve of S2

Figure 5: ROC Curve of S1 and S2 after simulation with four different seeds (n1 to n4).

explained by the well defined capacity restriction that has been modeled for517

S2 compared to S1, which makes S2 more predictable.518

Furthermore, a classification sample analyzed via the LR algorithm is519

shown in Table 1. The algorithm quantifies the probability of each supplier520

delivering each order on time based exclusively on past data. This approach521

includes an important aspect of human bias avoidance and the potential to522

support the decision-making process using other quantitative and qualita-523

tive approaches. In this paper, the LR performs the supplier selection both524

singularly and in combination with k-NN.525

Table 1: LR probability predictions for each supplier and selection results.

Order S1 S2 S3 S4 Rlr1 Rlr2

1 0.4361 0.1972 0.4980 0.1887 S3 S1

2 0.3319 0.3402 0.6014 0.3642 S3 S4

... ... ... ... ... ... ...
454 0.6236 0.2755 0.3248 0.2475 S1 S3

455 0.3313 0.9232 0.6015 0.9493 S4 S2

... ... ... ... ... ... ...
729 0.3230 0.0730 0.6108 0.0672 S3 S1

730 0.4156 0.2006 0.5178 0.1947 S3 S1

As mentioned in Subsection 3.2, the performance of k-NN algorithm is526

measured by its accuracy. A set of five different simulation seeds, as presented527

in Fig. 6, illustrate the accuracy of the k-NN algorithm in this model. In this528
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study, two predictions are made regarding the k-NN model using i.) the on-529

time delivery categorization and ii.) the delayed delivery categorization. In530

other words, the model suggests the supplier most likely to deliver a specific531

order on time and also the supplier most likely to perform a delayed delivery,532

respectively.533

Figure 6: Accuracy comparison of k-NN model under five different simulation seeds.

The results show the potential use of SML models as tools for decision-534

making support. Simulations using different seeds were performed to test535

the performance of these models based on delivery reliability, which stands536

proxy for the rate of successful on-time deliveries.537

Two simulations were performed based on the two previously mentioned538

scenarios in Subsection 3.4. Each simulation is repeated using five different539

seeds and the final results are presented in Fig. 7 according to the mean540

values.541

The experiment results suggest that a higher number of suppliers leads to542

a more resilient system, which can cope with disruptions and recurrent risks.543

In part, this is due to the fact there are more assertive models of adequate544

suppliers for a specific order. More evaluation options to be evaluated are545

available from which to make good choice. However, it is worth mentioning546

there is a trade-off – since the number of orders in the period does not change,547

a higher number of suppliers leads to less data being analyzed for each of548
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Figure 7: Delivery reliability performance after supplier selection using supervised machine
learning.

them. For instance, in this experiment the total number of orders is 2921.549

Thus, with less known information about a given supplier, there is a tendency550

towards poor poor representation of reality by the model, which means less551

accuracy, followed by poorer results with which to obtain a resilient supplier552

selection.553

It can also be observed that the mixed use of the SML algorithms led to554

an improvement in the delivery reliability of suppliers. For example, using555

the random approach to supplier selection, meaning this kind of data is not556

analyzed by SML, the delivery reliability is 44.03%. Adopting the Hybrid557

B model, the result increases to 46.16%. This means 62 late deliveries were558

avoided with the simple use of data that a priori would not be analyzed.559

When generalizing the results of this study, it can be observed that Big560

Data is worthless if not leveraged to drive decision-making [24]. In a society561

increasingly influenced by data-driven decision-making, the use of any and all562

kinds of data have the potential to generate new forms of decision-making and563

negotiation mechanisms. Emerging services and analytics, including merged564

technologies such as data warehouse, ML, visualization [19], are a new form565

of value creation in the era of digital manufacturing. Therefore, a complex566

and disruptive reality emerges and strategic and tactical decisions must con-567
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sider the impact of digital fragmentation in all aspects of the business [117],568

including the fragmentation of relationships between manufacturing firms.569

The experiment results show that a combination of SML and simulation570

can help in specifying a risk profile for each order, i.e., based on two features571

(delivery time and quantity) that have a causality relationship to OTD. The572

SC managers can obtain the estimations of what suppliers, or combinations573

of suppliers are most critical in terms of the disruptions and the resulting574

SC performance impact. As such the managers can explicitly use a causality575

relationship of the parameters in risk profiles of supplier performance with576

OTD (or any other KPI) that in turn, could feed risk mitigation and build-577

ing resilient supplier profiles. These risk profiles, which are built based on578

past data, can help creating continuous improvement strategies for supplier579

portfolio development.580

Ad-hoc customer-supplier relationships may arise from the adoption of581

a data-driven culture in manufacturing firms. For instance, a data-driven582

culture affects the bargaining power of companies, which could be represented583

by smart contracts based on supplier selection predictive models. In addition,584

by collecting and analyzing performance data from suppliers, it could be585

possible to contribute to more robust risk management models, which in586

turn would increase SC resilience.587

Digital manufacturing points to the direction of convergence between real588

and digital worlds by means of massive use of data and digital twins drive589

agile experimentation to enhance production systems. Experience-based590

decision-making tends to be replaced or, at least, strongly supported by591

data-driven decision-making. A priori, the resilient supplier selection has a592

role of decision-making support since it is an intrinsic multi-criteria decision593

problem and must consider strategic decisions. Therefore, the adoption of594

resilient supplier selection in combination with the strategic decision-making595

level has potential to compose a robust system of supplier selection in a596

digital manufacturing environment.597

5. Managerial implications and theoretical contributions598

Several managerial implications can be highlighted from this work, these599

insights may pose directions to future practical implementations to resilient600

SC development. First, our analysis shows an information method to in-601

tegrate simulation and ML models that can evaluate digital services per-602

formance in manufacturing. Since it is a fully digital approach, it can be603
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valuable for prototyping and validating new services in less time and cost604

within digital manufacturing context. Second, the adoption of a data-driven605

culture in manufacturing enterprises may result in ad-hoc customer-supplier606

relationships. This can happen due to the possibility of developing bias-free607

ML models, which means decision-making can be exclusively result-oriented.608

Third, the model utilizes data that does not require any expensive data ac-609

quisition system, therefore this kind of approach can be seen essential to610

increment the rate of early adopters of digital manufacturing. In addition,611

data management must consider strategic decisions to unlock benefits and612

develop data strategies within manufacturing firms. Forth, intelligent and613

agile decision-making is considered essential to develop resilient SCs, there-614

fore digital twins are useful to prospect scenarios in order to achieve resilient615

systems by performing proactive agile experimentation.616

Furthermore, some theoretical contributions are emphasized. First, the617

use of SML based on existing databases may boost SC risk management mod-618

els. This can happen because the use of SML models allow the reduction of619

abstractions of risk management models by analysing past data and pre-620

senting pattern recognition outcomes that can substitute diverse simplifying621

hypothesis. Second, rule-based systems combining learning algorithms can622

increment overall system performance. In this work, two algorithms (Hybrid623

A and B) improved overall delivery reliability by manipulating the accuracy624

of learning algorithms. Third, as the proposed model is based on a learn-625

ing process, it has potential to confer adaptability to the decision-making626

process and can dynamically analyse past data in order to make better deci-627

sions. Forth, previous researches using ML to solve supplier selection do not628

have presented simulation approaches, which are likely to gain momentum629

with the digitization of manufacturing assets by IoT devices. Therefore, this630

work contributes to the vision of using manufacturing simulation in a new631

way, i.e., as a provider of synthetic data to train ML models that address632

SC resilience. Finally, manufacturing is becoming increasingly dependent on633

statistical methods and there is a wide variety of data analytics approaches634

that could be experimented to solve classical manufacturing problems.635

6. Conclusion636

In this paper, we introduced a new approach to resilient supplier selec-637

tion that utilizes the advances in data analytics while avoiding two major638

inconveniences, namely the need to estimate the likelihood of disruptions639
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and forecasting the performance impacts. One difficulty in managing the640

resilient supplier portfolios using disruption probability estimations is a rel-641

ative rarity of risk events which are too intermittent and irregular to be642

accurately identified, estimated, and forecasted. Instead of estimating prob-643

abilities of highly unpredictable events, the emphasis of our study shifts to644

utilizing the advantages of digital data in smart manufacturing systems to645

predict the supplier proneness to disruptions, and the associated impact on646

SC performance. A specific focus of analysis was directed toward resilient647

supplier selection in digital manufacturing. The test cases were performed in648

a digital make-to-order manufacturing environment using a simulation tool.649

The results indicate that the use of SML algorithms can support the resilient650

supplier selection decision-making process, leading to more predictable de-651

livery from suppliers and improvements in risk mitigation decision-making.652

The application of this approach requires a change of mindset regarding the653

customer-supplier relationship, meaning that these relations should be more654

ephemeral and data-oriented so that resilient supplier portfolios can be de-655

veloped and resilient SCs can be achieved.656

Two significant contributions emerge. First, we show that the associa-657

tions of the deviations from the resilient SC performance profile with the risk658

profiles of supplier performance can be efficiently deciphered by a combina-659

tion of SML and simulation. Second, the results of this study advance the660

understanding about how and when ML and simulation can be combined to661

create digital SC twins, and through these twins improve resilience. The out-662

comes of this study can emerge in a number of useful insights for managers663

such as a development of most critical suppliers, re-engineering of supplier664

base, investments in SC resilience, order allocation improvement or even an665

acquisition of a risky but very important supplier. The findings suggest that666

our model can be of value in revealing latent, high-risk supplier portfolios,667

and prioritizing risk mitigation efforts. In the experiment, the suppliers had668

restrictions on production capacity in certain periods and were represented669

in a dataset divided by categories, such as order date and order quantity.670

The SML model was able to predict the performance of the suppliers when671

variations in these categorizations had occurred.672

The use of SML can contribute to supplier selection as a risk mitigation673

strategy that could assist optimization and resilience management models.674

With the advent of Big Data availability, decision-making in manufactur-675

ing will become increasingly dependent on statistical methods. Hence, it is676

essential to pave the way for replacing abstractions with ML models in manu-677
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facturing risk management processes, so that value creation can be perceived678

by practitioners and real data shared, leading to a virtuous circle of improve-679

ment.680

Finally, some limitations and future research avenues may be highlighted.681

First, the advantages of using ML techniques can become more evident when682

considering larger data sets. Those advantages can be manifested in faster683

processing times and better causality recognition as compared to traditional684

statistical methods. Since the dimensionality of our data set is quite small685

and restricted to two parameters (i.e., delivery time and quantity), other686

statistical methods could have been used for our specific model, but on the687

other hand, such methods could not be feasible in real applications. In real688

supplier databases, there would be multiple parameters in the SC resilience689

analysis. The use of ML could suit better to such an increased complexity690

and can be of value at manufacturing firms with a data-driven culture. Sec-691

ond, although the model considers stochastic variations to approximate to a692

real case, the model is still based on fictional data: the results are subject to693

variations in real case scenarios. For real case applications in data-oriented694

firms, more features will exist because of the increase in data availability.695

In these cases, previous feature selection can be used to identify the most696

relevant features in the prediction model, or deep learning techniques should697

be considered. To that end, the simulation model can be extended by adding698

product variability, transport costs, and other customized features. In ad-699

dition, it is possible to investigate different SML algorithms, as well as new700

methods of combining two or more of these algorithms while considering the701

respective accuracy of each.702

These limitations imply a number of possible extensions of this work in703

future. For example, a differentiation of supplier profiles can be considered,704

e.g., a more resilient supplier has higher costs, or a variation in available705

quantity is different at different suppliers, or a price competition between706

suppliers. Furthermore, the use of rule-based systems combining different707

learning algorithms showed overall system performance improvement. This708

may be an indicative that the use of learning subsystems via meta-learning709

may yield even better performances specially when modelling in more com-710

plex scenarios. These extensions would also be favorable by introducing other711

methodological aspects, e.g., deep learning techniques which might be helpful712

in detecting multiple causalities and improving the model performance.713
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smart factoryconcept using bibliometric tools, International Journal of920

Production Research 55 (2017) 6572–6591.921

[70] A. Bounfour, Digital futures, digital transformation, Springer 10 (2016)922

978–3.923

[71] R. Dubey, A. Gunasekaran, S. Childe, S. Fosso Wamba, D. Roubaud,924

C. Forupon, Empirical investigation of data analytics capability and925

organizational flexibility as complements to supply chain resilience, In-926

ternational Journal of Production Research (2019).927

33



[72] T.-M. Choi, S. W. Wallace, Y. Wang, Big data analytics in operations928

management, Production and Operations Management 27 (2018) 1868–929

1883.930

[73] T. Nguyen, Z. Li, V. Spiegler, P. Ieromonachou, Y. Lin, Big data931

analytics in supply chain management: A state-of-the-art literature932

review, Computers & Operations Research 98 (2018) 254–264.933

[74] K. Lamba, S. P. Singh, N. Mishra, Integrated decisions for supplier934

selection and lot-sizing considering different carbon emission regula-935

tions in big data environment, Computers & Industrial Engineering936

128 (2019) 1052–1062.937

[75] K. Lamba, S. P. Singh, Dynamic supplier selection and lot-sizing prob-938

lem considering carbon emissions in a big data environment, Techno-939

logical Forecasting and Social Change (2018).940

[76] H. Kaur, S. P. Singh, Heuristic modeling for sustainable procurement941

and logistics in a supply chain using big data, Computers & Operations942

Research 98 (2018) 301–321.943

[77] H. Kaur, S. P. Singh, Modeling low carbon procurement and logistics944

in supply chain: A key towards sustainable production, Sustainable945

Production and Consumption 11 (2017) 5–17.946

[78] H. Kaur, S. P. Singh, Sustainable procurement and logistics for disaster947

resilient supply chain, Annals of Operations Research (2016) 1–46.948

[79] A. Pavlov, D. Ivanov, D. Pavlov, A. Slinko, Optimization of network re-949

dundancy and contingency planning in sustainable and resilient supply950

chain resource management under conditions of structural dynamics,951

Annals of Operations Research (2019).952

[80] T.-M. Choi, J. H. Lambert, Advances in risk analysis with big data,953

Risk Analysis 37 (2017) 1435–1442.954

[81] T.-M. Choi, H. K. Chan, X. Yue, Recent development in big data ana-955

lytics for business operations and risk management, IEEE Transactions956

on Cybernetics 47 (2017) 81–92.957

34



[82] D. Simchi-Levi, W. Schmidt, Y. Wei, P. Y. Zhang, K. Combs, Y. Ge,958

O. Gusikhin, M. Sanders, D. Zhang, Identifying risks and mitigating959

disruptions in the automotive supply chain, Interfaces 45 (2015) 375–960

390.961

[83] O. Gusikhin, E. Klampfl, Jedi: Just-in-time execution and distribution962

information support system for automotive stamping operations, in:963

Decision Policies for Production Networks, Springer, 2012, pp. 119–142.964

[84] T.-M. Choi, A system of systems approach for global supply chain man-965

agement in the big data era, IEEE Engineering Management Review966

46 (2018) 91–97.967

[85] G. Baryannis, S. Validi, S. Dani, G. Antoniou, Supply chain risk man-968

agement and artificial intelligence: state of the art and future research969

directions, International Journal of Production Research (2018) 1–24.970

[86] P. Priore, B. Ponte, J. Puente, A. Gómez, Learning-based scheduling971
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